Stand on Tesla coil


 [shortlink url=”” title=”Continued From V8 Tesla Engine”]

After playing with the V8 Tesla engine I realised that I could build a stand on tesla coil. The lack of mains power could make this “fairly” safe.

So I started with a topload that was big enough and strong enough to stand on. I started with a pair of 110mm PVC tubes and joined them together. The thought was to make an oval tesla coil (big mistake).

After winding the secondary, by hand (1000T of 0.33mm wire ) on to the former I started to realise that there was a problem, the wire stretched slightly and started to sag between the two tubes. To give the wire some support I wound PVC tape around the coils as I completed them. This was partially successful, but as I had nothing to loose so I continued.


The Topload needed to be strong enough to

stand on too and smooth and an oval.

So I started with an MDF former of 3 oval sheets spaced to a total height of 2.5″, and an external wrap of pipe lagging to give the external shape.

Over this I added paper mache and then a covering of plaster and PVA glue to give it strength. This last layer could be sanded to smooth out the edges.

Img20130914_10302The Primary, I quickly roughed out from 50′ of 5mm break pipe held in an oval spiral with cable ties and adhesive.

The output from the V8 tesla engine is fed into a primary cap and an crude sparkgap.






Here is the coil working at the Nottingham Gaussfest.

Note that the problems with the secondary coil are starting to show with a breakout at the bottom.

But it was worth having a go at standing out the coil. After a while I found that the tuning point changed only a single turn when I was standing on the coil.

Below is a video of the first run with me on top.

So I realised that the secondary needed to be re-built The pictures below show the damage.20140305_194312







So the rebuild begins


This time I’ve packed out the space with some cardboard  in the void between the PVC pipes and sheets under the coil bridging the two pipes. The cardboard is held in place with many layers of adhesive craft paper that was varnished before the wire was wound on.

The finished article looks a load better then the old one, but there is still some minor ‘droopage’ between turns. So the coil was heavily varnished after winding.

Hopefully it will not suffer the same breakouts as the old.


Also I decided to clean and re-mount the sparkgap the old copper pipe gaps were a little? corroded.

The Sparkgap is mounted on to a channelled acrlyic chamber that allows a high volume fan to blow air over the gaps for cooling and more importantly  spark quenching.

20140208_163246 20140215_154730






Better results from the new coil

Finally, Power from a tesla coil – Free energy?

2004_0728_210053aI have been tesla coiling for over 14 years now, and I have always believed that there was no way that a tesla coil could produce more power out than was applied in. Of course there are many stories of Tesla himself creating a power system from tesla coils, but these mainly refer to his “World Power System” which was a method of distributing power, not creating it.

Recently I have been experimenting with car ignition coils to create the high voltage required for the input to a tesla coil and have had great success with this for a number of small coils.

Whilst playing with this system, I noticed a strange phenomenon. If the ignition coil was close to the primary of the tesla coil some of the large current circulating in the primary would be induced back into the ignition coil, I could even draw spark from an unpowered coil near the working tesla 2003_0906_110312AAacoil.

Thinking about this further I decided to put the ignition coil upside down into the secondary of the tesla coil and draw out the HV lead out and feed back into the spark gap and the unmodified primary coil / capacitor of the tesla coil. If I gave this circuit a high voltage pulse to start it, the tesla coil would power its-self for periods of up to a second.

Obviously2003_0923_220336AA I needed to reduce the losses in the coil to maintain the process.

After much playing, I can now get the tesla coil to run for fractions of a year with no extra input and with instantaneous outputs in the region of millions of Ergs per second.

One drawback to this process is any tools in the vicinity acquire a blue glow which is really difficult to remove , they also give a nasty spark when you touch them.Img20081121-214320aa

But, this important thing is, can I extract any useful power from this arrangement?

Looking in to this I attached a common kettle and unfortunately found that the device won’t power it efficiently due to the differences in the voltages needed compared to the high voltages generated , but I have used the coil to create heat directly creating temperatures of thousands of degrees C, well in excess of the temperature required to boil water, and that could be used to power a steam turbine.

For now I will be keeping this power source’s exact details a closely guarded secret, as I would like to make millions from it, not just run my house. My prototype is happily powering my LCD clock and has been for a number of days, although I do need to clean the electrodes from time to time to maintain this level of power, so far I haven’t found a non-corrosive element better than lemon juice to keep them clean.


Next is to scale up the process.

Unfortunately I can’t get larger ignition coils, but I can get multiple tesla coils, and I’m starting to build a system with 8 coils. At present I can get about 300W at 10KV with this system, although it is being driven at 24V at present.

But to be able to draw 10KV from the machine is a great step up from only 24V. 10KV is not far from the voltage(14.4kv) used in small power transmission systems that power small industrial parks, not bad from a couple of small 12V batteries.

For more details, take a look at the V8 telsa engine